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Metrics and Norms

                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 



                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 

2     Metrics and Norms.nb



                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 

Metrics and Norms.nb    3



                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 

4     Metrics and Norms.nb



                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 

6     Metrics and Norms.nb



                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 

Metrics and Norms.nb    9



                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 

12     Metrics and Norms.nb



                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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                 METRIC SPACES

Definition: 

A function d on M ´ M  satisfying the following properties is called a metric on M :

i)  0 £ dHx, yL < ¥  for all pairs x, y Î M .

ii)  dHx, yL = 0  iff  x = y.

iii)  dHx, yL = dH y, xL  for all pairs x, y Î M .

iv)  dHx, yL £ dHx, zL + dHz, yL  for all x, y, z Î M .

The couple HM , d L, consisting of a set M  together with a metric d defined on M , is called 

a metric space. 

Example:

a) Every set M  admits at least one metric. For example, check that the function defined 

by dHx, yL = 1 for any x ¹ y in M , and dHx, xL = 0 for all x Î M , is a metric. This mundane 

but always available metric is called the dicrete metric on M . A set supplied with its 

discrete metric is called a discrete space.   

b) An important example is the real line R together with its usual metric dHa, bL =  a - b¤. 
Any time we refer to R without explicitly naming a metric, the absolute value metric is 

always understood to be the one that we have in mind. 

c) Any subset of a metric space is also a metric space in its own right. If d is a metric on 

M , and A Ì M , then dHx, yL is defined for any pair x, y Î A. Moreover, the restriction of 

d to A ´ A obviously still satisfies properties (i)-(iv). That is, the metric defined on M  

automatically defines a metric on A by restriction. We will even use the same letter d and 

simply refer to the metric space HA, dL. Of particular interest in this regard is that  N, Z, 

Q, and R\Q each come already supplied with a natural metric, namely the restriction of 

the usual absolute value metric on R. In each case, we will refer to this restriction as the 

usual metric.  Ù

How can we enrich our arsenal of metric functions? 

ð Suppose that d is a metric on M  and f : M � M  is a bijective function. Then, 

Ρ : M ´ M �R defined by ΡHx, yL = dH f HxL, f H yLL is also a metric on M , as we can verify. 

ð Suppose that g : M �R is an injective function (not necessarily surjective). Then, 

G : M ´ M �R defined by GHx, yL = ¡gHxL - gH yL¥ is a metric on M . 

To see this, observe that 

i) 0 £ GHx, yL < ¥  for all pairs x, y Î M      ª
ii) GHx, yL = 0  iff  ¡gHxL - gH yL¥ = 0, which is true only iff gHxL = gH yL, which happens only 

when x = y, since we assumed that g is injective.   ª
iii) GHx, yL = ¡gHxL - gH yL¥ = ¡gH yL - gHxL¥ = GH y, xL   ª
iv) GHx, yL = ¡gHxL - gH yL¥ = ¡gHxL - gHzL + gHzL - gH yL¥

             £ ¡gHxL - gHzL¥ + ¡gHzL - gH yL¥ = GHx, zL + GHz, yL   ª
             

Example:

a) Define d1, d2, d3 : R
2 �@0, ¥M by 

   d1Hx, yL = ¡tan-1HxL - tan-1H yL¥  ,    d2Hx, yL = ¡x3 - y3¥,    and    d3Hx, yL =  ãx - ã y¤

Then, d1, d2, and d3 are all metric functions on R. 

b) Let M = H0, ¥L. Then d1, d2, d3 : H0, ¥L ´ H0, ¥L�@0, ¥L defined by 

 d1Hx, yL = ¡ x - y ¥  ,     d2Hx, yL =  lnHxL - lnH yL¤ = ¢lnJ x

y
N¦  ,     d3Hx, yL = ¢ 1

x
-

1

y
¦

 are all metric functions on M . 

 

 c) Note that a function can be a metric on one set and fail to be a metric on another. 

Take, for instance, the function dHx, yL = ¡x2 - y2¥. Then d defines a metric on @0, ¥L, but 

fails to be a metric on R. (we can easily see why, as it violates some properties of metric 

spaces).            Ù

 

Note: We can expand our collection of metrics even further. To do this, we first prove 

the following lemma.

 

• Lemma:

Let f : @0, ¥L�@0, ¥L be any function with the following two properties:

 a) f HxL = 0  iff  x = 0. Otherwise f HxL > 0. 

 b) f ¢ is decreasing. That is, if x < y, then f ¢HxL > f ¢H yL.
Then for any pair x, y Î @0, ¥L, f Hx + yL £ f HxL + f H yL. 
 

Proof:

Let gHxL = f Hx + yL and pHxL = f HxL + f H yL, where we regard y as a fixed number. We 

wish to show that gHxL £ pHxL or, equivalently, that 0 £ pHxL - gHxL. 

Notice that 
â

âx
I pHxL - gHxLM = p¢HxL - g¢HxL = f ¢HxL - f ¢Hx + yL ³ 0 by property b) of f .

Thus, by the first derivative test, pHxL - gHxL is increasing for all x Î @0, ¥L, attaining its 

smallest value when x = 0. Now, pH0L - gH0L = f H0L + f H yL - f H yL = f H yL - f H yL = 0. 

Thus, pHxL - gHxL ³ 0 for all x and the desired result follows.      à

• Theorem:

Let d : M ´ M �@0, ¥L be a metric function on M  and suppose f : @0, ¥L�@0, ¥L satis-

fies properties a) and b) of the above lemma. 

If f ¢HtL > 0 " t Î H0, ¥L, then Ρ : M ´ M �@0, ¥L given by ΡHx, yL = f HdHx, yLL defines 

another metric on M . 

Proof:

We have to check if all four properties of metrics are satisfied: 

i) Clearly 0 £ f HdHx, yLL < ¥ " x, y Î M .     ª

ii) Suppose ΡHx, yL = 0, then f HdHx, yLL = 0. By property a) of f , this implies that 

dHx, yL = 0, or x = y. Obviously ΡHx, xL = 0.      ª

iii) Clearly ΡHx, yL = ΡH y, xL " x, y Î M .

iv) ΡHx, yL = f HdHx, yLL £ f HdHx, zL + dHz, yLL
          £ f HdHx, zLL + f HdHz, yLL
          = ΡHx, zL + ΡHz, yL     " x, y, x Î M .     ª

Note that on property iv) the first inequality comes from the assumption that f  is increas-

ing and dHx, yL £ dHx, zL + dHz, yL, and the second inequality is a consequence of the 

above lemma. 

Hence, since Ρ satisfies all the required properties, we conclude that Ρ is a metric func-

tion.             à

Example:

a) We should verify that

       ΡHa, bL =  a - b¤ ,       ΣHa, bL =
 a-b¤

1+ a-b¤
,      zHa, bL = lnH a - b¤ + 1L

each define metrics on R. 

b) If d is any metric on M , verify that 

     ΡHx, yL = dHx, yL ,       ΣHx, yL =
dHx,yL

1 +dHx,yL
,      zHx, yL = lnHdHx, yL + 1L

are also metrics on M . 

Comprehension check: Is ΡHx, yL = lnI¡x3 - y3¥ + 1M  a metric function on R? 

How about ΣHx, yL =
lnI¡x3- y3¥+1M

1+ lnI¡x3- y3¥+1M
?  Ù

 NORMED VECTOR SPACES

A large and important class of metric spaces are also vector spaces over  R or C. Notice, 

for example, that C@0, 1D is a vector space.

An easy way to build a metric on a vector space is by way of a length function or norm. 

Definition: A norm on a vector space V  is a function ÈÈ × ÈÈ : V �@0, ¥L satisfying 

i) 0 £ ÈÈ x ÈÈ < ¥  " x Î V

ii) ÈÈ x ÈÈ = 0  iff  x = 0

iii) ÈÈ Α x ÈÈ =  Α¤ ÈÈ x ÈÈ  for any scalar Α and any x Î V

iv) ÈÈ x + y ÈÈ £ ÈÈ x ÈÈ + ÈÈ y ÈÈ " x, y Î V

A function ÈÈ × ÈÈ : V �@0, ¥L satisfying all of the above properties except ii) is called a 

pseudonorm. That is, a pseudonorm allows nonzero vectors to have zero length. 

The pair HV , ÈÈ × ÈÈL, consisting of a vector space V  together with a norm on V , is called a 

normed vector space. It is easy to see that any norm induces a metric on V  by setting 

dHx, yL = ÈÈ x - y ÈÈ. We will refer to this particular metric as the usual metric on HV , ÈÈ × ÈÈL. 

Example:

a) The absolute value function   × ¤ clearly defines a norm on R.

b) Each of the following defines a norm on Rn:

For x = Hx1, ..., xnL Î R
n,

ð ÈÈ x ÈÈ1 = Ú
i=1

n

 xi¤          

ð ÈÈ x ÈÈ2 = Ú
i=1

n

 xi¤2
1�2

   

...As it happens, for 1 £ p < ¥, the expression ÈÈ x ÈÈ p = Ú
i=1

n

 xi¤ p

1� p

 defines a norm on  

R
n. 

ð ÈÈ x ÈÈ¥ = max
1 £ i £ n

 xi¤

The first and last expressions are very easy to check while the second takes a bit more 

work. 

The function ÈÈ × ÈÈ2 is often called the Euclidean norm and is generally accepted as the 

norm of choice in R
n

c) Each of the following defines a norm on C@a, bD:

ð ÈÈ f ÈÈ1 = Ù
a

b
  f HtL¤ â t

ð ÈÈ f ÈÈ2 = JÙ
a

b
  f HtL¤2 â tN

1�2

ð ÈÈ f ÈÈ¥ = max
a £ t £ b

  f HtL¤

Again, the second expression is the hardest to check. The last expression is generally 

taken as “the” norm on C@a, bD.  

d) If HV , ÈÈ × ÈÈL is a normed vector space, and if W is a linear subspace of V , then W is 

also normed by ÈÈ × ÈÈ. That is, the restriction of ÈÈ × ÈÈ to W defines a norm on W.

e) We might also consider the sequence space analogues of the “scale” of norms on Rn 

given in b) . For 1 £ p < ¥, we define { p to be the collection of all real sequences x = 8xn< 

for which Ú
n=1

¥

 xn¤ p < ¥, and we define {¥ to be the collection of all bounded real 

sequences. Each { p is a vector space under coordinatewise addition and scalar multiplica-

tion.

Moreover, the expression 

                           ÈÈ x ÈÈ p = H Ú  xi¤ pL1� p    if 1 £ p < ¥   

or

                             ÈÈ x ÈÈ¥ = sup
n Î N

 xn¤         if p = ¥ 

defines a norm on { p. The cases p = 1 and p = ¥ are easy to check. We will verify the 

other results shortly. 

• Lemma (The Cauchy-Schwarz Inequality):

Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 for any x, y Î {2.

Proof:

To simplify notation, we write Xx, y\ = Ú xi yi.

We first consider the case where x, y Î R
n (that is, xi = 0 = yi " i > n). In this case, Xx, y\ 

is the usual “dot product” in Rn. Also notice that we may suppose that x, y ¹ 0 (there is 

nothing to show if either is 0). 

Now let t Î R and consider

       0 £ ÈÈ x + t y ÈÈ2
2 = Xx + t y, x + t y\ = ÈÈ x ÈÈ2

2 +2 t Xx, y\ + t2 ÈÈ y ÈÈ2
2

Since this (nontrivial) quadratic in t is always nonnegative, it must have a nonpositive 

discriminant.  Thus, 

H2 Xx, y\L2 - 4 ÈÈ x ÈÈ2
2 ÈÈ y ÈÈ2

2 £ 0

or, after simplifying, 

      Xx, y\¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 .

That is, 

   Ú
i=1

n

xi yi £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Now this isn’t quite what we wanted, but it actually implies the stronger inequality in the 

statement of the lemma. Why? Because the inequality that we have shown must also hold 

for the vectors H x1¤,  x2¤, ...,  xn¤L  and H  y1¤,   y2¤, ...,   yn¤L. 
That is,

    Ú
i=1

n

 xi yi¤ £ ÈÈ H x1¤, ...,  xn¤L ÈÈ ÈÈ H  y1¤, ...,   yn¤L ÈÈ = ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Finally, let x, y Î {2. Then, for each n we have

               Ú
i=1

n

 xi yi¤ £ Ú
i=1

n

 xi¤2
1�2

Ú
i=1

n

  yi¤2
1�2

£ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2

Thus, Ú
i=1

¥

xi yi must be absolutely convergent and satisfy Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ2 ÈÈ y ÈÈ2.  à

Now we are ready to prove the triangle inequality for the {2 norm.

• Theorem (Minkowski’s Inequality):

If x, y Î {2, then x + y Î {2. Moreover, ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.

Proof:

It follows from the Cauchy-Schwarz inequality that,

for each n we have

    Ú
i=1

n

 xi + yi¤2 = Ú
i=1

n

 xi¤2 + 2 Ú
i=1

n

xi yi + Ú
i=1

n

  yi¤2

                £ ÈÈ x ÈÈ2
2 +2 ÈÈ x ÈÈ2 ÈÈ y ÈÈ2 + ÈÈ y ÈÈ2

2 = H ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2L2 .

Thus, since n is arbitrary, we have x + y Î {2  and ÈÈ x + y ÈÈ2 £ ÈÈ x ÈÈ2 + ÈÈ y ÈÈ2.      à

We now proceed to show that ÈÈ × ÈÈ p is a norm on { p. 

• Lemma:

Let 1 < p < ¥  and let a, b ³ 0. Then, Ha + bL p £ 2 p Ha p + b pL . Consequently, x + y Î { p 

whenever x, y Î { p. 

Proof:

Ha + bL p £ H2 max 8a, b<L p = 2 p max 8a p, b p< £ 2 p Ha p + b pL. 
Thus, if x, y Î { p, then 

Ú
n=1

¥

 xn + yn¤ p £ 2 p Ú
n=1

¥

 xn¤ p + 2 p Ú
n=1

¥

  yn¤ p < ¥.       à

• Lemma (Young’s Inequality):

Let 1 < p < ¥  and let q be defined by 
1

p
+

1

q
= 1. 

Then, for any a, b ³ 0, we have ab £
a p

p
+

b p

q
, with equality occurring iff a p-1 = b. 

Proof:

Since the inequality trivially holds if either a or b is 0, we may suppose a, b > 0. 

Since 
1

p
+

1

q
= 1, we see that pJ 1

p
+

1

q
N = p�1 +

p

q
= p. In particular, 

p

q
= q - 1.

Similarly, notice that qJ 1

p
+

1

q
N = q, implying that 

q

p
= q - 1. 

Thus, 

              
1

p-1
=

1

p�q
=

q

p
= q -1 .

Also notice that q =
1

p-1
+ 1, implying that, just like p, q is also in H1, ¥L.

Thus, the functions f HxL = x p-1 and gHxL = x q-1 are inverses for x ³ 0. 

The proof of the inequality follows from a comparison of areas (see figure):

     

The area of the rectangle with sides of lengths a and b is at most the sum of the areas 

under the graphs of the functions y = x p-1 for 0 £ x £ a and x = y q-1 for 0 £ y £ b. 

That is,

         

Clearly, equality can occur only if a p-1 = b.     à

Note: When p = q = 2, Young’s inequality reduces to the arithmetic–geometric mean 

inequality ( although it is usually stated in the form ab £
a+b

2
). Young’s inequality will 

supply the extension of the Cauchy-Schwarz inequality that we need. So now we present 

a more generalized Cauchy-Schwarz inequality:

• Lemma (Hölder’s Inequality):

Let 1 < p < ¥ and let q be defined by 
1

p
+

1

q
= 1 . 

Given x Î { p and y Î {q , we have

                Ú
i=1

¥

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq .

Proof:

We may suppose that ÈÈ x ÈÈ p > 0 and ÈÈ y ÈÈq > 0 (since, otherwise, there is nothing to 

show). Now, for n ³ 1 we use Young’s inequality to estimate:

         

Thus, Ú
i=1

n

 xi yi¤ £ ÈÈ x ÈÈ p ÈÈ y ÈÈq for any n ³ 1, and the result follows.           à

Note: Our proof of the triangle inequality will be made easier if we first isolate one of the 

key calculations. Notice that if x Î { p, then the sequence 9 xn¤ p-1=
n=1

¥
Î {q , because 

I p - 1M q = p. Moreover,

                                  

• Theorem (Minkowski’s (General) Inequality):

Let 1 < p < ¥. If x, y Î { p, then x + y Î { p. Moreover, ÈÈ x + y ÈÈ p £ ÈÈ x ÈÈ p + ÈÈ y ÈÈ p.

Proof:

We have already shown in a previous lemma that x + y Î { p. To prove the triangle inequal-

ity, we once again let q be defined by 
1

p
+

1

q
= 1, and we now use Hölder’s inequality to 

estimate:

              

That is, ÈÈ x + y ÈÈ p

p
£ ÈÈ x + y ÈÈ p

p-1
I ÈÈ x ÈÈ p + ÈÈ y ÈÈ pM, and the triangle inequality follows.  à

 LIMITS IN METRIC SPACES

  

Now that we have generalized the notion of distance, we are now ready to define the 

notion of limits in abstract metric spaces. Throughout this section, unless otherwise 

specified , we will assume that we are always dealing with a generic metric space HM , dL. 

Definition: Given x Î M  and r > 0, the set BrHxL = 8 y Î M : dHx, yL < r< is called the open 

ball about x of radius r. If we also need to refer to the metric d, then we write Br
dHxL . 

We may occasionally refer to the set Cr
dHxL = 8 y Î M : dHx, yL £ r< as the closed ball about 

x of radius r.

Example:

a) In R we have BrHxL = Hx - r, x + rL, the open interval of radius r about x and 

CrHxL = @x - r, x + rD, the closed interval of radius r about x.

b) In R2 the set BrHxL is the open disk of radius r centered at x. 

The appereance of BrHxL in fact depends on the metric at hand:

If d is generated by the norm ÈÈ × ÈÈ1, then BrHxL will look like a square of diameter 2 r 

centered at x = Ha, bL.

                                    

If d is generated by the norm ÈÈ × ÈÈ2, then BrHxL will look like a disk of radius r centered at 

x = Ha, bL. 

                                

If d is generated by the norm ÈÈ × ÈÈ p, with 1 < p < ¥, then BrHxL will look like a brick with 

rounded corners. As p gets larger, the brick will assume the appearance of a regular 

square. 

                               

Finally, if d is generated by the norm ÈÈ × ÈÈ¥, then BrHxL will look like a square with diame-

ter 2 2 r, centered at x = Ha, bL. 

                                    

c)  In a discrete space B1HxL = 8x} and B2HxL = M .

d)  In a normed vector space HV , ÈÈ × ÈÈL the balls centered at 0 play a special role. In this 

setting BrHxL = x + BrH0L = 8 y Î V : y = x + z ß ÈÈ z ÈÈ < r<. 

Note: A subset A of M  is said to be bounded if it is contained in some ball, that is, if 

A Ì BrHxL for some x Î M  and some r > 0. But exactly which x and r does not much 

matter. 

In fact, A is bounded iff for any x Î M  we have sup
a Î A

HdHx, aLL < ¥. Related to this is the 

diameter of A, defined by diamHAL = sup 8dHa, bL : a, b Î A<. The diameter of A is a conve-

nient measure of size because it does not refer to points outside of A.

Definition: A neighborhood of x is any set containing an open ball about x. We should 

think of a neighborhood of x as a “thick” set of points near x. 

We say that a sequence of points 8xn< in M  converges to a point x Î M  if dHxn, xL�0. 

Now, since this definition is stated in terms of the sequence of real numbers 8dHxn, xL<n=1
¥ , 

we can easily derive the following equivalent reformulations:

   

If it should happen that 8xn : n ³ N< Ì A for some N , we say that the sequence 8xn< is 

eventually in A. Thus, our last formulation can be written

This final version is blessed by a total lack of N’s and ¶’s! In any event, just as with real 

sequences, we usually settle for the shorthand xn � x in place of the phrase 8xn< con-

verges to x. On occasion we will want to display the set M , or d, or both, and so we may 

also write xn �
d

x or xn � x in HM , dL. 

Definition:  A sequence 8xn< is a Cauchy sequence in HM , dL if, given any ¶ > 0, there is 

an integer N ³ 1 such that dHxm, xnL < ¶ whenever m, n ³ N .

We can reword this just a bit to read: 8xn< is Cauchy iff, given ¶ > 0, there is an integer 

N ³ 1 such that diamH8xn : n ³ N<L < ¶.

Related to the concept of clustering (i.e. Cauchy) sequences, but in no way identical to it, 

is the concept of convergent sequences (Cauchy sequences need not necessarily con-

verge). For convenience, the definition of convergence is stated below. 

Definition:  Let HM , dL be a metric space. A sequence 8xn<
n=1
¥ Ì M  is said to converge in 

M  if there is some x Î M  such that, for every Ε > 0, there is an integer N > 0 that satisfies 

dHxn, xL < Ε whenever n ³ N . 

Example:

Let M = @0, ¥L be endowed with its usual   × ¤ metric and let : 1

n
>

n=1

¥

 be a sequence in M .

a) Is : 1

n
>

n=1

¥

 a convergent sequence?

Solution:

Recall that vaguely familiar expression from calculus: limit
n�¥

1

n
= 0. We will show that 

: 1

n
>

n=1

¥

 converges to 0. 

Since R is an ordered field, ¡ 1

n
- 0 ¦ =

1

n
< Ε iff n >

1

Ε
. It follows from the Archimidean 

property of  R that n >
1

Ε
 can be achieved for some sufficiently large integer N . Thus, if 

n ³ N , 
1

n
< Ε as desired.          

b) Is : 1

n
>

n=1

¥

 a Cauchy sequence?

Solution:

The sequence is Cauchy. For Ε > 0, let N  be a positive integer such that if n ³ N , 

¡ 1

n
- 0 ¦ £

Ε

2
. Then for m, n ³ N , 

¡ 1

m
-

1

n
¦ £ ¡ 1

n
- 0 ¦ + ¡ 1

m
- 0 ¦ <

Ε

2
+

Ε

2
= Ε .                 Ù

Example:

Consider the sequence : 1

n
>

n=1

¥

, but this time in M = H0, ¥L. 

Then : 1

n
>

n=1

¥

 is still a Cauchy sequence under the usual metric inherited by M  from R. 

Notice however, that limit
n�¥

1

n
= 0 Ï H0, ¥L. Thus, : 1

n
>

n=1

¥

 does not converge in M .  Ù

Note: As we’ll see now, whether a sequence converges or not depends on the metric 

function as well. 

Example:

Let HM , dL be the metric space @0, ¥L under the discrete metric dHx, yL =
1 if x ¹ y

0 if x = y
 . 

Then the sequence : 1

n
>

n=1

¥

 does not converge, since for any x Î M , 

B1
dHxL = 8 y Î M : dHx, yL < 1< = 8x<. In other words, : 1

n
>

n=1

¥

 fails to cluster around x.  Ù

Note: As we’ll see now, whether a given sequence is Cauchy depends on the metric 

function. 

Example:

Let M = H0, ¥L and d be defined by dHx, yL = ¢ 1

x
-

1

y
¦. Then the sequence : 1

n
>

n=1

¥

Ì M  is 

not Cauchy: dJ 1

n
,

1

m
N =  n - m¤ ³ 1 for m ¹ n .         Ù

• Proposition:

Limits are unique. That is, if xn Ì
d

x and xn Ì
d

y, then x = y. 

Proof:

We will show that dHx, yL = 0 by proving that dHx, yL < Ε  for any Ε > 0.

Since xn Ì
d

y, there is some N > 0 such that dHxn, yL <
Ε

2
 whenever n ³ N . Similarly, 

since xn Ì
d

x, there is some M > 0 such that dHxn, xL <
Ε

2
 whenever n ³ M . Letting 

k = max 8M , N< we see that 

              dHx, yL £ dHx, xnL + dHxn, yL <
Ε

2
+

Ε

2
= Ε

whenever n ³ k.            à

The proposition above is reassuring. It tells us that when we go somewhere, we will 

arrive to one place and one place only. It would’ve been rather confusing if we had 

arrived at different places at once. 

• Proposition:

Every convergent sequence is Cauchy, and a Cauchy sequence is bounded. That is, the 

set 8xn : n ³ 1< is bounded.

Proof:

Suppose xn Ì
d

x. Then, for any Ε > 0, there is a positive integer N  such that dHxn, xL <
Ε

2
 

whenever n ³ N . Now, 

                            dHxn, xmL £ dHxn, xL + dHx, xmL <
Ε

2
+

Ε

2
= Ε  

whenever n, m ³ N .  Thus, 8xn<
n=1
¥  is Cauchy.

Now suppose 8 yn<
n=1
¥  is Cauchy in HM , dL. We would like to show that 8 yn : n ³ 1<  is 

bounded. That is, we need to find y Î M  and r Î R such that dH yn, yL £ r " n ³ 1.

Let Ε > 0. Then, for some N > 0, dH yn, ymL < Ε  whenever n, m ³ N . 

Now we set 

           y = yN                and                r = Ú
i=1

N-1

dH yi, yN L + Ε . 

Observe that dH yn, yN L < Ε  whenever n ³ N  and dH yn, yN L £ Ú
i=1

N-1

dH yi, yN L whenever 

n £ N - 1. Thus, dH yn, yN L < r " n Î N.        à

Note: Although every Cauchy sequence is bounded, not every bounded sequence is, in 

turn, Cauchy. For an easy example, consider 8n<
n=1
¥ Ì R under the discrete metric. This 

sequence is definitely bounded, but it is not Cauchy.

As another example, notice that the sequence 8H-1Ln<n=1
¥ Ì R is bounded in any metric, as 

it has a finite range. However this is not a Cauchy sequence. 
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